PRIORY CATHOLIC PRIMARY SCHOOL

Calculation Policy

Our calculation policy

The following pages show the progression in calculation (addition, subtraction, multiplication and division) and how this works in line with the National Curriculum. The consistent use of the CPA (concrete, pictorial, abstract) helps children develop mastery across all the operations in an efficient and reliable way. This policy shows how these methods develop children's confidence in their understanding of both written and mental methods.

EYFS

In Reception, children focus on concrete and pictorial representations. At this stage, children focus on representing objects in different ways e.g. understanding that 5 cars can also be represented as 5 counters, 5 cubes, 5 pictures of cars, etc.

In Reception, children are encouraged to record their findings in their own way. This may include writing number sentences e.g. $3+4=7$, however this is not a requirement until Year 1.

Priory calculation policy Reception

Children develop the core ideas that underpin all calculation. They begin by connecting calculation with counting on and counting back, but they should learn that understanding wholes and parts will enable them to calculate efficiently and accurately, and with greater flexibility. Children record their calculations in their own ways, there is no expectation of number sentences at this stage, however children may choose this way to record their thinking.
Key language: count, forwards, backwards, whole, part, recombine, break apart, ones, ten, tens, number bond, add, adding together, addition, plus, total, altogether, first, then, now, subtract, subtraction, find the difference, take away, minus, left, less, more, fewer, group, share, equal, equals, is equal to, groups, equal groups, divide, share, shared equally

Progression in calculation in Reception		
Addition: Children start to explore addition by sorting groups. They then use sorting to develop their understanding of parts and wholes.	Subtraction: Children start to explore subtraction by sorting groups. They use sorting to develop their understanding of parts and wholes.	Multiplication and Division: Children first start to look at the idea of equal groups through their exploration of doubles. They use five frames and objects to check that groups are equal.
Children combine groups to find the whole, using a part-whole model to support their thinking. They also use the part-whole model to find number bonds within and to 10.	When comparing groups, children use the language more than and fewer than. This will lead to finding the difference when they move into KS1.	Children then explore halving numbers by making two equal groups. They highlight patterns between doubling and halving seeing that double 2 is 4 and half of 4 is 2.
Using a five frame and ten frame, children add by counting on. They start by finding one more before adding larger numbers using counters or cubes on the frames.	Children then connect subtraction with the idea of counting back and finding one less using a five frame to support their thinking.	As well as halving, children also explore sharing into more than two equal groups. They share objects one by one, ensuring that each group has an equal share.
Children use a number track to add by counting on. Linking this learning to playing board games is an effective way to support children's addition.	They explore subtraction by breaking apart a whole to find a missing part. This links to their developing recall of number bonds.	Children count back within 20 using number tracks and ten frames to see the effect of taking away.

Comparing groups

Children line up cubes or counters to compare the amount in each group. Lines can either be horizontal or vertical. A starting line helps to line the objects accurately.

There are more yellow cubes.
There are fewer red cubes.

Finding number bonds to 10

Children partition 10 into different groups to find the number bonds to 10.

Children begin to work with subtraction number bonds. They break apart 10 to identify different number bonds to 10 .

[^0]
Finding number bonds to 10

Children use part-whole models, ten frames and counters to find the number bonds to 10 .

10 is the whole.
5 is a part and 5 is a part.

10 is the whole.
5 is a part and 5 is a part.

Children use part-whole models, and counters to find missing parts and the subtraction number bonds to 10 .

The parts are 8 and 2.
10 is the whole.

	Counting back and taking away (number track) Children use game boards and human number tracks to subtract by counting back. 9 take away 3 equals 6 9...8...7... 6	Counting back and taking away (number track) Children use a number track and a counter. They start at the larger number and count back the smaller number to find the answer. 9 take away 3 equals 6 9...8...7... 6
	Counting back and taking away (ten frames) Children count backwards to find one less with numbers up to 20 . One less than 16 is 15 .	Counting back and taking away (ten frames) Children remove counters from ten frames to support in counting back with numbers up to 20. One less than 16 is 15 .

Half of 8 is 4 .

Halving and sharing
Children use five frames to share amounts fairly and to check that the groups are equal. They share the counters/cubes one by one.

KEY STAGE 1

Children develop the core ideas that underpin all calculation. They begin by connecting calculation with counting on and counting back, but they should learn that understanding wholes and parts will enable them to calculate efficiently and accurately, and with greater flexibility. They learn how to use an understanding of 10 s and 1 s to develop their calculation strategies, especially in addition and subtraction.

Key language: whole, part, ones, ten, tens, number bond, add, addition, plus, total, altogether, subtract, subtraction, find the difference, take away, minus, less, more, group, share, equal, equals, is equal to, groups, equal groups, times, multiply, multiplied by, divide, share, shared equally, times-table

Addition and subtraction: Children first learn to

 connect addition and subtraction with counting, but they soon develop two very important skills: an understanding of parts and wholes, and an understanding of unitising 10 s , to develop efficient and effective calculation strategies based on known number bonds and an increasing awareness of place value. Addition and subtraction are taught in a way that is interlinked to highlight the link between the two operations.A key idea is that children will select methods and approaches based on their number sense. For example, in Year 1, when faced with 15-3 and 15-13, they will adapt their ways of approaching the calculation appropriately. The teaching should always emphasise the importance of mathematical thinking to ensure accuracy and flexibility of approach, and the importance of using known number facts to harness their recall of bonds within 20 to support both addition and subtraction methods.
In Year 2, they will start to see calculations presented in a column format, although this is not expected to be formalised until KS2. The column method in Year 2 as an option; depending on the needs of the child, this may not be introduced until Year 3.

Multiplication and division: Children develop an awareness of equal groups and link this with counting in equal steps, starting with 2 s , 5 s and 10s. In Year 2, they learn to connect the language of equal groups with the mathematical symbols for multiplication and division.

They learn how multiplication and division can be related to repeated addition and repeated subtraction to find the answer to the calculation.
In this key stage, it is vital that children explore and experience a variety of strong images and manipulative representations of equal groups, including concrete experiences as well as abstract calculations.
Children begin to recall some key multiplication facts, including doubles, and an understanding of the 2, 5 and 10 times-tables and how they are related to counting.

Fractions: In Year 1, children encounter halves and quarters, and link this with their understanding of sharing. They experience key spatial representations of these fractions, and learn to recognise examples and non-examples, based on their awareness of equal parts of a whole.

In Year 2, they develop an awareness of unit fractions and experience non-unit fractions, and they learn to write them and read them in the common format of numerator and denominator.

Year 1

	Concrete	Pictorial	Abstract
Year 1 Addition	Counting and adding more Children add one more person or object to a group to find one more.	Counting and adding more Children add one more cube or counter to a group to represent one more. One more than 4 is 5 .	Counting and adding more Use a number line to understand how to link counting on with finding one more. One more than 6 is 7 . 7 is one more than 6. Learn to link counting on with adding more than one. $5+3=8$
	Understanding part-part-whole relationship Sort people and objects into parts and understand the relationship with the whole. The parts are 2 and 4. The whole is 6 .	Understanding part-part-whole relationship Children draw to represent the parts and understand the relationship with the whole. The parts are 1 and 5 . The whole is 6 .	Understanding part-part-whole relationship Use a part-whole model to represent the numbers. $\begin{aligned} & 6+4=10 \\ & 6+4=10 \end{aligned}$

Adding by counting on

Children use knowledge of counting to 20 to find a total by counting on using people or objects.

Adding the 1s

Children use bead strings to recognise how to add the 1 s to find the total efficiently.
$-00000000000-000-$
$2+3=5$
$12+3=15$

Bridging the 10 using number bonds

 Children use a bead string to complete a 10 and understand how this relates to the addition.$-00000000-$
7 add 3 makes 10 .
So, 7 add 5 is 10 and 2 more.

Adding by counting on

Children use counters to support and represent their counting on strategy.

Adding the 1s

Children represent calculations using ten frames to add a teen and 1 s .

$$
2+3=5
$$

$$
12+3=15
$$

Bridging the 10 using number bonds

 Children use counters to complete a ten frame and understand how they can add using knowledge of number bonds to 10.
$+$

Adding by counting on

Children use number lines or number tracks to support their counting on strategy.

$7+5=$ \square

Adding the 1 s

Children recognise that a teen is made from a 10 and some 1 s and use their knowledge of addition within 10 to work efficiently.
$3+5=8$
So, $13+5=18$

Bridging the 10 using number bonds

 Use a part-whole model and a number line to support the calculation.

Year 1 Subtraction	Counting back and taking away Children arrange objects and remove to find how many are left. 1 less than 6 is 5 . 6 subtract 1 is 5 .	Counting back and taking away Children draw and cross out or use counters to represent objects from a problem. $\mathrm{q}-\square=\square$ There are \square children left.	Counting back and taking away Children count back to take away and use a number line or number track to support the method. $9-3=6$
	Finding a missing part, given a whole and a part Children separate a whole into parts and understand how one part can be found by subtraction. $8-5=?$	Finding a missing part, given a whole and a part Children represent a whole and a part and understand how to find the missing part by subtraction. $5-4=\square$	Finding a missing part, given a whole and a part Children use a part-whole model to support the subtraction to find a missing part. $7-3=?$ Children develop an understanding of the relationship between addition and subtraction facts in a part-whole model.

Finding the difference

Arrange two groups so that the difference between the groups can be worked out.

NTR

8 is 2 more than 6.
6 is 2 less than 8.
The difference between 8 and 6 is 2 .

Subtraction within 20

Understand when and how to subtract 1s efficiently.

Use a bead string to subtract 1 s efficiently.
$00000000000-000-$

$$
\begin{aligned}
5-3 & =2 \\
15-3 & =12
\end{aligned}
$$

Subtracting 10s and 1s

For example: 18-12
Subtract 12 by first subtracting the 10 , then the remaining 2.

First subtract the 10, then take away 2.

Finding the difference

Represent objects using sketches or counters to support finding the difference.

$5-4=1$
The difference between 5 and 4 is 1 .

Subtraction within 20

Understand when and how to subtract 1s efficiently.

$5-3=2$
$15-3=12$

Subtracting 10s and 1 s

For example: 18-12
Use ten frames to represent the efficient method of subtracting 12.

First subtract the 10 , then subtract 2.

Finding the difference
Children understand 'find the difference' as subtraction.

$10-4=6$
The difference between 10 and 6 is 4 .

Subtraction within 20

Understand how to use knowledge of bonds within 10 to subtract efficiently.
$5-3=2$
$15-3=12$

Subtracting 10s and 1s

Use a part-whole model to support the calculation
10
$19-14$
$19-10=9$
$9-4=5$

	Subtraction bridging 10 using number bonds For example: 12-7 Arrange objects into a 10 and some 1s, then decide on how to split the 7 into parts. 7 is 2 and 5 , so I take away the 2 and then the 5 .	Subtraction bridging 10 using number bonds Represent the use of bonds using ten frames. For 13-5, I take away 3 to make 10, then take away 2 to make 8.	Subtraction bridging 10 using number bonds Use a number line and a part-whole model to support the method. $13-5$
Year 1 Multiplication	Recognising and making equal groups Children arrange objects in equal and unequal groups and understand how to recognise whether they are equal.	Recognising and making equal groups Children draw and represent equal and unequal groups. B	Describe equal groups using words Three equal groups of 4. Four equal groups of 3.
	Finding the total of equal groups by counting in $\mathbf{2 s}$, 5 s and $\mathbf{1 0 s}$ There are 5 pens in each pack... $5 \ldots 10 \ldots 15 \ldots 20 \ldots 25 \ldots 30 \ldots 35 \ldots 40 \ldots$	Finding the total of equal groups by counting in 2 s , 5 s and 10 s 100 squares and ten frames support counting in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s .	Finding the total of equal groups by counting in $\mathbf{2 s}, 5 \mathrm{~s}$ and $\mathbf{1 0 s}$ Use a number line to support repeated addition through counting in $2 \mathrm{~s}, 5$ s and 10s.

Year 1 Division	Grouping Learn to make equal groups from a whole and find how many equal groups of a certain size can be made. Sort a whole set people and objects into equal groups. There are 10 children altogether. There are 2 in each group. There are 5 groups.	Grouping Represent a whole and work out how many equal groups. There are 10 in total. There are 5 in each group. There are 2 groups.	Grouping Children may relate this to counting back in steps of 2, 5 or 10.
	Sharing Share a set of objects into equal parts and work out how many are in each part.	Sharing Sketch or draw to represent sharing into equal parts. This may be related to fractions.	Sharing 10 shared into 2 equal groups gives 5 in each group.

Year 2

	Concrete	Pictorial	Abstract
Year 2 Addition			
Understandin g 10s and 1s	Group objects into 10s and 1 s ． Bundle straws to understand unitising of 10s．	Understand 10s and 1s equipment，and link with visual representations on ten frames．	Represent numbers on a place value grid，using equipment or numerals．
Adding 10s	Use known bonds and unitising to add 10s． I know that $4+3=7$ ． So，I know that 4 tens add 3 tens is 7 tens．	Use known bonds and unitising to add 10s． I know that $4+3=7$ ． So，I know that 4 tens add 3 tens is 7 tens．	Use known bonds and unitising to add 10s． $\begin{aligned} & 4+3=\square \\ & 4+3=7 \\ & 4 \text { tens }+3 \text { tens }=7 \text { tens } \\ & 40+30=70 \end{aligned}$

Adding a 1-digit number to a 2-digit number not bridging a 10	Add the 1 s to find the total. Use known bonds within 10. 41 is 4 tens and 1 one. 41 add 6 ones is 4 tens and 7 ones. This can also be done in a place value grid.	Add the 1 s . 34 is 3 tens and 4 ones. 4 ones and 5 ones are 9 ones. The total is 3 tens and 9 ones.	Add the 1 s . Understand the link between counting on and using known number facts. Children should be encouraged to use known number bonds to improve efficiency and accuracy. This can be represented horizontally or vertically. $34+5=39$ or
Adding a 1-digit number to a 2-digit number bridging 10	Complete a 10 using number bonds. $+$ Mand There are 4 tens and 5 ones. I need to add 7 . I will use 5 to complete a 10 , then add 2 more.	Complete a 10 using number bonds.	Complete a 10 using number bonds. $\begin{aligned} & 7=5+2 \\ & 45+5+2=52 \end{aligned}$

number using columns	T 0 10 $e d e$ 0^{10} $0 e d$ 10 10 16 is 1 ten and 6 ones. 30 is 3 tens. There are 4 tens and 6 ones in total.	 16 is 1 ten and 6 ones. 30 is 3 tens. There are 4 tens and 6 ones in total.	method relates to unitising of 10s and place value. $\begin{aligned} & 1+3=4 \\ & 1 \text { ten }+3 \text { tens }=4 \text { tens } \\ & 16+30=46 \end{aligned}$
Adding two 2-digit numbers	Add the 10 s and 1 s separately. $5+3=8$ There are 8 ones in total. $3+2=5$ There are 5 tens in total. $35+23=58$	Add the 10s and 1s separately. Use a part-whole model to support. $\begin{aligned} & 11=10+1 \\ & 32+10=42 \\ & 42+1=43 \end{aligned}$ $32+11=43$	Add the 10 s and the 1 s separately, bridging 10s where required. A number line can support the calculations.

Adding two 2-digit numbers using a place value grid	Add the 1s. Then add the 10 s .		Add the 1 s . Then add the 10 s .
Adding two 2-digit numbers with exchange	Add the 1s. Exchange 10 ones for a ten. Then add the 10s.		Add the 1s. Exchange 10 ones for a ten. Then add the 10s.

Year 2 Subtraction			
Subtracting multiples of 10	Use known number bonds and unitising to subtract multiples of 10 . 8 subtract 6 is 2 . So, 8 tens subtract 6 tens is 2 tens.	Use known number bonds and unitising to subtract multiples of 10 . $10-3=7$ So, 10 tens subtract 3 tens is 7 tens.	Use known number bonds and unitising to subtract multiples of 10 . 7 tens subtract 5 tens is 2 tens. $70-50=20$
Subtracting a single-digit number	Subtract the 1 s . This may be done in or out of a place value grid.	Subtract the 1s. This may be done in or out of a place value grid.	Subtract the 1s. Understand the link between counting back and subtracting the 1 s using known bonds. $\begin{array}{rl} \mathrm{T} & 0 \\ \hline 3 & 9 \\ - & 3 \\ \hline & \\ \hline & 6 \\ & \\ & 9-3=6 \\ 39-3=36 \end{array}$
Subtracting a single-digit number bridging 10	Bridge 10 by using known bonds. $35-6$ I took away 5 counters, then 1 more.	Bridge 10 by using known bonds. $35-6$ First, I will subtract 5, then 1.	Bridge 10 by using known bonds. $\begin{aligned} & 24-6=? \\ & 24-4-2=? \end{aligned}$

Subtracting a 2-digit number using place value and columns	Subtract the 1s. Then subtract the 10s. This may be done in or out of a place value grid. $38-16=22$	Subtract the 1s. Then subtract the 10s.	Using column subtraction, subtract the 1 s . Then subtract the 10 s . $-\begin{array}{r\|c} \mathrm{T} & 0 \\ \hline 4 & 5 \\ 1 & 2 \\ \hline 3 & 3 \\ \hline \end{array}$
Subtracting a 2-digit number with exchange		Exchange 1 ten for 10 ones. Then subtract the 1 s . Then subtract the 10 s.	Using column subtraction, exchange 1 ten for 10 ones. Then subtract the 1 s . Then subtract the 10 s . $\begin{array}{rr} T & 0 \\ \hline 4 & 5 \\ -2 & 7 \\ \hline & \\ \hline T & 0 \\ \hline 3 & 0 \\ -4 & 5 \\ -2 & 7 \\ \hline & \\ \hline T & 0 \\ \hline 3 / 4 & 5 \\ -2 & 7 \\ \hline & 8 \\ \hline T & 0 \\ \hline \end{array}$

Year 2 Multiplication			
Equal groups and repeated addition	Recognise equal groups and write as repeated addition and as multiplication． 3 groups of 5 chairs 15 chairs altogether	Recognise equal groups using standard objects such as counters and write as repeated addition and multiplication．	Use a number line and write as repeated addition and as multiplication． $\begin{aligned} & 5+5+5=15 \\ & 3 \times 5=15 \end{aligned}$
Using arrays to represent multiplication and support understandin g	Understand the relationship between arrays，multiplication and repeated addition． 休价价价价 4 groups of 5	Understand the relationship between arrays，multiplication and repeated addition． 4 groups of 5 ．．． 5 groups of 5	Understand the relationship between arrays，multiplication and repeated addition． $5 \times 5=25$
Understandin g commutativit y	Use arrays to visualise commutativity． I can see 6 groups of 3 ． I can see 3 groups of 6 ．	Form arrays using counters to visualise commutativity．Rotate the array to show that orientation does not change the multiplication． This is 2 groups of 6 and also 6 groups of 2 ．	Use arrays to visualise commutativity． $\begin{aligned} & 4+4+4+4+4=20 \\ & 5+5+5+5=20 \\ & 4 \times 5=20 \text { and } 5 \times 4=20 \end{aligned}$

Learning $\times 2$, $\times 5$ and $\times 10$ table facts

Develop an understanding of how to unitise groups of 2,5 and 10 and learn corresponding times-table facts.

3 groups of $10 \ldots 10,20,30$
$3 \times 10=30$

Understand how to relate counting in unitised groups and repeated addition with knowing key times-table facts.

0000000000
0000000000
0000000000

$10+10+10=30$
$3 \times 10=30$

Understand how the times-tables increase and contain patterns.

10101010

1010101010

101010101010

10101010101010

101010101010101010

10101010101010101010

1010101010101010101010

101010101010101010101010

$5 \times 10=50$
$6 \times 10=60$

Year 2 Division			
Sharing equally	Start with a whole and share into equal parts, one at a time. 12 shared equally between 2. They get 6 each. Start to understand how this also relates to grouping. To share equally between 3 people, take a group of 3 and give 1 to each person. Keep going until all the objects have been shared They get 5 each. 15 shared equally between 3. They get 5 each.	Represent the objects shared into equal parts using a bar model. 20 shared into 5 equal parts. There are 4 in each part.	Use a bar model to support understanding of the division. $18 \div 2=9$

Grouping equally	Understand how to make equal groups from a whole. 1029 \square 8 divided into 4 equal groups. There are 2 in each group.	Understand the relationship between grouping and the division statements. $12 \div 3=4$ $12 \div 4=3$ $12 \div 6=2$ $12 \div 2=6$	Understand how to relate division by grouping to repeated subtraction. There are 4 groups now. 12 divided into groups of 3 . $12 \div 3=4$ There are 4 groups.
Using known times-tables to solve divisions	Understand the relationship between multiplication facts and division. 4 groups of 5 cars is 20 cars in total. 20 divided by 4 is 5 .	Link equal grouping with repeated subtraction and known times-table facts to support division. 40 divided by 4 is 10 . Use a bar model to support understanding of the link between times-table knowledge and division. \qquad	Relate times-table knowledge directly to division. $\begin{array}{ll} 1 \times 10=10 & \\ 2 \times 10=20 & \\ 3 \times 10=30 & \text { I used the } 10 \\ 4 \times 10=40 & \text { times-table } \\ 5 \times 10=50 & \text { to help me. } \\ 6 \times 10=60 & 3 \times 10=30 \\ 7 \times 10=70 & \\ 8 \times 10=80 & \end{array}$ I know that 3 groups of 10 makes 30, so I know that 30 divided by 10 is 3 . $3 \times 10=30 \text { so } 30 \div 10=3$

Lower Key Stage 2

LOWER KEY STAGE 2

In Years 3 and 4, children develop the basis of written methods by building their skills alongside a deep understanding of place value. They should use known addition/subtraction and multiplication/division facts to calculate efficiently and accurately, rather than relying on counting. Children use place value equipment to support their understanding, but not as a substitute for thinking.
Key language: partition, place value, tens, hundreds, thousands, column method, whole, part, equal groups, sharing, grouping, bar model

PROGRESSION IN CALCULATION IN LOWER KEY STAGE 2

Addition and subtraction: In Year 3 especially, the column methods are built up gradually. Children will develop their understanding of how each stage of the calculation, including any exchanges, relates to place value. The example calculations chosen to introduce the stages of each method may often be more suited to a mental method. However, the examples and the progression of the steps have been chosen to help children develop their fluency in the process, alongside a deep understanding of the concepts and the numbers involved, so that they can apply these skills accurately and efficiently to later calculations. The class should be encouraged to compare mental and written methods for specific calculations, and children should be encouraged at every stage to make choices about which methods to apply.
In Year 4, the steps are shown without such fine detail, although children should continue to build their understanding with a secure basis in place value. In subtraction, children will need to develop their understanding of exchange as they may need to exchange across one or two columns.

By the end of Year 4, children should have developed fluency in column methods alongside a deep understanding, which will allow them to progress confidently in upper Key Stage 2.

Multiplication and division: Children build a solid grounding in times-tables, understanding the multiplication and division facts in tandem. As such, they should be as confident knowing that 35 divided by 7 is 5 as knowing that 5 times 7 is 35 .

Children develop key skills to support multiplication methods: unitising, commutativity, and how to use partitioning effectively.

Unitising allows children to use known facts to multiply and divide multiples of 10 and 100 efficiently. Commutativity gives children flexibility in applying known facts to calculations and problem solving. An understanding of partitioning allows children to extend their skills to multiplying and dividing 2 - and 3 -digit numbers by a single digit.

Children develop column methods to support multiplications in these cases.

For successful division, children will need to make choices about how to partition. For example, to divide 423 by 3 , it is effective to partition 423 into 300,120 and 3 , as these can be divided by 3 using known facts.

Children will also need to understand the concept of remainder, in terms of a given calculation and in terms of the context of the problem.

Fractions: Children develop the key concept of equivalent fractions, and link this with multiplying and dividing the numerators and denominators, as well as exploring the visual concept through fractions of shapes. Children learn how to find a fraction of an amount, and develop this with the aid of a bar model and other representations alongside.
in Year 3, children develop an understanding of how to add and subtract fractions with the same denominator and find complements to the whole. This is developed alongside an understanding of fractions as numbers, including fractions greater than 1. In Year 4, children begin to work with fractions greater than 1.

Decimals are introduced, as tenths in Year 3 and then as hundredths in Year 4. Children develop an understanding of decimals in terms of the relationship with fractions, with dividing by 10 and 100, and also with place value.

Year 3

	Concrete	Pictorial	Abstract
Year 3 Addition			
Understandin g 100s	Understand the cardinality of 100 , and the link with 10 tens. Use cubes to place into groups of 10 tens.	Unitise 100 and count in steps of 100. 100 200 300	Represent steps of 100 on a number line and a number track and count up to 1,000 and back to 0 .
Understandin g place value to $\mathbf{1 , 0 0 0}$	Unitise 100s, 10s and 1s to build 3-digit numbers.	Use equipment to represent numbers to 1,000. Use a place value grid to support the structure of numbers to 1,000 . Place value counters are used alongside other equipment. Children should understand how each counter represents a different unitised amount.	Represent the parts of numbers to 1,000 using a part-whole model. $215=200+10+5$ Recognise numbers to 1,000 represented on a number line, including those between intervals.

Adding 100s	Use known facts and unitising to add multiples of 100. $\begin{aligned} & 3+2=5 \\ & 3 \text { hundreds }+2 \text { hundreds }=5 \text { hundreds } \\ & 300+200=500 \end{aligned}$	Use known facts and unitising to add multiples of 100. $3+4=7$ 3 hundreds +4 hundreds $=7$ hundreds $300+400=700$	Use known facts and unitising to add multiples of 100 . Represent the addition on a number line. Use a part-whole model to support unitising. $\begin{aligned} & 3+2=5 \\ & 300+200=500 \end{aligned}$
3-digit number + 1s, no exchange or bridging	Use number bonds to add the 1 s . $214+4=?$ Now there are $4+4$ ones in total. $4+4=8$ $214+4=218$	Use number bonds to add the 1 s . Use number bonds to add the ls . $5+4=9$ $\begin{aligned} & 245+4 \\ & 5+4=9 \end{aligned}$ $245+4=249$	Understand the link with counting on. $245+4$ Use number bonds to add the 1s and understand that this is more efficient and less prone to error. $245+4=?$ I will add the 1 s . $5+4=9$ So, $245+4=249$

3－digit number＋1s with exchange	Understand that when the 1 s sum to 10 or more，this requires an exchange of 10 ones for 1 ten． Children should explore this using unitised objects or physical apparatus．	Exchange 10 ones for 1 ten where needed．Use a place value grid to support the understanding．			Understand how to bridge by partitioning to the 1 s to make the next 10.
		H	T	0	7
				ロםロロロ	
		H	T	0	
				88000	$\underset{135}{1} 1+1 \times 1+140142$
					$\begin{aligned} & 135+7=? \\ & 135+5+2=142 \end{aligned}$
		H	T	0	
		표		$\begin{array}{\|l\|} \hline 60000 \\ \hline 00000 \\ \hline 00 \end{array}$	Ensure that children understand how to add 1 s bridging a 100.
		H	T	0	$198+5=?$
				00	$198+2+3=203$
		H	T	0	
		\＃\＃	眮聞	ョロ	
		$135+7=$			

3-digit number + 10s, no exchange	Calculate mentally by forming the number bond for the 10 s. There are 3 tens and 5 tens altogether. $3+5=8$ In total there are 8 tens. $234+50=284$	Calcula number $351+3$	te mentally bond for the $0=?$ $\begin{aligned} & +3 \text { tens }=8 \\ & 30=381 \end{aligned}$	forming the s.	Calculate mentally by forming the number bond for the 10 s . $753+40$ I know that $5+4=9$ $\begin{aligned} \text { So, } 50+40 & =90 \\ 753+40 & =793 \end{aligned}$
3-digit number + 10s, with exchange	Understand the exchange of 10 tens for 1 hundred. \square	Add by hundred. $184+2$ $184+$	exchanging d. $0=?$ $20=204$	ens for 1	Understand how the addition relates to counting on in 10s across 100. $184+20=?$ $\begin{aligned} & \text { I can count in } 10 \text { s } \ldots 194 \ldots 204 \\ & 184+20=204 \end{aligned}$ Use number bonds within 20 to support efficient mental calculations. $385+50$ There are 8 tens and 5 tens. That is 13 tens. $\begin{aligned} & 385+50=300+130+5 \\ & 385+50=435 \end{aligned}$

3-digit number + 2digit number	Use place value equipment to make and combine groups to model addition.	Use a place value grid to organise thinking and adding of 1 s , then 10 s .	Use the vertical column method to represent the addition. Children must understand how this relates to place value at each stage of the calculation.
3-digit number + 2digit number, exchange required	Use place value equipment to model addition and understand where exchange is required. Use place value counters to represent $154+72$. Use this to decide if any exchange is required. There are 5 tens and 7 tens. That is 12 tens so I will exchange.	Represent the required exchange on a place value grid using equipment. $275+16=?$ $275+16=291$ Note: In this example, a mental method may be more efficient. The numbers for the example calculation have been chosen to allow children to visualise the concept and see how the method relates to place value. Children should be encouraged at every stage to select methods that are accurate and efficient.	Use a column method with exchange. Children must understand how the method relates to place value at each stage of the calculation. $275+16=291$

3-digit number + 3digit number, no exchange	Use place value equipment to make a representation of a calculation. This may or may not be structured in a place value grid. $326+541$ is represented as:	Represent the place value grid with equipment to model the stages of column addition.	Use a column method to solve efficiently, using known bonds. Children must understand how this relates to place value at every stage of the calculation.
3-digit number + 3digit number, exchange required	Use place value equipment to enact the exchange required. There are 13 ones. I will exchange 10 ones for 1 ten.	Model the stages of column addition using place value equipment on a place value grid.	Use column addition, ensuring understanding of place value at every stage of the calculation. $126+217=343$ Note: Children should also study examples where exchange is required in more than one column, for example 185 $+318=$?

Representing addition problems, and selecting appropriate methods	Encourage children to use their own drawings and choices of place value equipment to represent problems with one or more steps. These representations will help them to select appropriate methods.	Children understand and create bar models to represent addition problems. $275+99=?$ $275+99=374$	Use representations to support choices of appropriate methods. I will add 100, then subtract 1 to find the solution. $128+105+83=?$ I need to add three numbers. 316
Year 3 Subtraction			
$\begin{aligned} & \text { Subtracting } \\ & \text { 100s } \end{aligned}$	Use known facts and unitising to subtract multiples of 100. $\begin{aligned} & 5-2=3 \\ & 500-200=300 \end{aligned}$	Use known facts and unitising to subtract multiples of 100. $\begin{aligned} & 4-2=2 \\ & 400-200=200 \end{aligned}$	Understand the link with counting back in 100s. $400-200=200$ Use known facts and unitising as efficient and accurate methods. I know that 7-4=3. Therefore, I know that $700-400=300$.

Representing subtraction problems		Use bar models to represent subtractions. 'Find the difference' is represented as two bars for comparison. Bar models can also be used to show that a part must be taken away from the whole.	Children use alternative representations to check calculations and choose efficient methods. Children use inverse operations to check additions and subtractions. The part-whole model supports understanding. I have completed this subtraction. $525-270=255$ I will check using addition. $\begin{array}{r} \mathrm{H} \text { T } \mathrm{O} \\ \hline 2750 \\ +255 \\ \hline 5 \quad 2 \quad 5 \\ \hline \end{array}$

Using commutativit y to support understandin g of the times-tables	Understand how to use times-tables facts flexibly. NDI \square and There are 6 groups of 4 pens. There are 4 groups of 6 bread rolls. I can use $6 \times 4=24$ to work out both totals.	Understand how times-table facts relate to commutativity. $\begin{aligned} & 6 \times 4=24 \\ & 4 \times 6=24 \end{aligned}$	Understand how times-table facts relate to commutativity. I need to work out 4 groups of 7 . I know that $7 \times 4=28$ so, I know that 4 groups of $7=28$ and 7 groups of $4=28$.
Understandin g and using $\times 3, \times 2, \times 4$ and $\times 8$ tables.	Children learn the times-tables as 'groups of', but apply their knowledge of commutativity. I can use the $\times 3$ table to work out how many keys. I can also use the $\times 3$ table to work out how many batteries.	Children understand how the $\times 2, \times 4$ and $\times 8$ tables are related through repeated doubling. $3 \times 2=6$ $3 \times 4=12$ $3 \times 8=24$	Children understand the relationship between related multiplication and division facts in known times-tables. $\begin{aligned} & 2 \times 5=10 \\ & 5 \times 2=10 \\ & 10 \div 5=2 \\ & 10 \div 2=5 \end{aligned}$

Using known facts to multiply 10s, for example 3×40	Explore the relationship between known times-tables and multiples of 10 using place value equipment. Make 4 groups of 3 ones. Make 4 groups of 3 tens. What is the same? What is different?	Understand how unitising 10s supports multiplying by multiples of 10 . 4 groups of 2 ones is 8 ones. 4 groups of 2 tens is 8 tens. $\begin{aligned} & 4 \times 2=8 \\ & 4 \times 20=80 \\ & \hline \end{aligned}$	Understand how to use known timestables to multiply multiples of 10 . $\begin{aligned} & 4 \times 2=8 \\ & 4 \times 20=80 \end{aligned}$
Multiplying a 2-digit number by a 1-digit number	Understand how to link partitioning a 2digit number with multiplying. Each person has 23 flowers. Each person has 2 tens and 3 ones. There are 3 groups of 2 tens. There are 3 groups of 3 ones.	Use place value to support how partitioning is linked with multiplying by a 2-digit number. $3 \times 24=?$ $3 \times 4=12$	Use addition to complete multiplications of 2 -digit numbers by a 1 -digit number. $\begin{aligned} & 4 \times 13=? \\ & 4 \times 3=12 \\ & 12+40=52 \\ & 4 \times 13=52 \end{aligned}$

	Use place value equipment to model the multiplication context. There are 3 groups of 3 ones. There are 3 groups of 2 tens.	$\begin{aligned} & 3 \times 20=60 \\ & 60+12=72 \\ & 3 \times 24=72 \end{aligned}$	
Multiplying a 2-digit number by a 1-digit number, expanded column method	Use place value equipment to model how 10 ones are exchanged for a 10 in some multiplications. $\begin{aligned} & 3 \times 24=? \\ & 3 \times 20=60 \\ & 3 \times 4=12 \end{aligned}$ $\begin{aligned} & 3 \times 24=60+12 \\ & 3 \times 24=70+2 \\ & 3 \times 24=72 \end{aligned}$	Understand that multiplications may require an exchange of 1 s for 10 s , and also 10 s for 100 s . $4 \times 23=?$	Children may write calculations in expanded column form, but must understand the link with place value and exchange. Children are encouraged to write the expanded parts of the calculation separately. $5 \times 28=?$

| Understandin g remainders | Use equipment to understand that a remainder occurs when a set of objects cannot be divided equally any further.
 \|||||||||||| $\square \square \square \mid$
 There are 13 sticks in total. There are 3 groups of 4, with 1 remainder. | Use images to explain remainders.
 $22 \div 5=4$ remainder 2 | Understand that the remainder is what cannot be shared equally from a set. $22 \div 5=?$ $\begin{aligned} & 3 \times 5=15 \\ & 4 \times 5=20 \end{aligned}$
 $5 \times 5=25 \ldots$ this is larger than 22
 So, $22 \div 5=4$ remainder 2 |
| :---: | :---: | :---: | :---: |
| Using known facts to divide multiples of 10 | Use place value equipment to understand how to divide by unitising.
 Make 6 ones divided by 3.
 Now make 6 tens divided by 3.
 What is the same? What is different? | Divide multiples of 10 by unitising.
 12 tens shared into 3 equal groups. 4 tens in each group. | Divide multiples of 10 by a single digit using known times-tables. $180 \div 3=?$
 180 is 18 tens.
 18 divided by 3 is 6 .
 18 tens divided by 3 is 6 tens. $\begin{aligned} & 18 \div 3=6 \\ & 180 \div 3=60 \end{aligned}$ |
| 2-digit number divided by 1-digit number, no remainders | Children explore dividing 2-digit numbers by using place value equipment. \square $48 \div 2=?$ | Children explore which partitions support particular divisions. | Children partition a number into 10s and 1s to divide where appropriate. $\begin{gathered} 60 \div 2=30 \\ 8 \div 2=4 \\ 30+4=34 \\ 68 \div 2=34 \end{gathered}$ |

	First divide the 10 s ． Then divide the 1 s ． 日昌日 日昌日	I need to partition 42 differently to divide by 3. $\begin{aligned} & 42=30+12 \\ & 42 \div 3=14 \end{aligned}$	Children partition flexibly to divide where appropriate． $\begin{aligned} & 42 \div 3=? \\ & 42=40+2 \end{aligned}$ I need to partition 42 differently to divide by 3. $\begin{aligned} & 42=30+12 \\ & 30 \div 3=10 \\ & 12 \div 3=4 \\ & 10+4=14 \\ & 42 \div 3=14 \end{aligned}$
2－digit number divided by 1－digit number，with remainders	Use place value equipment to understand the concept of remainder． Make 29 from place value equipment． Share it into 2 equal groups． There are two groups of 14 and 1 remainder．	Use place value equipment to understand the concept of remainder in division． $29 \div 2=?$ $29 \div 2=14 \text { remainder } 1$	Partition to divide，understanding the remainder in context． 67 children try to make 5 equal lines． $\begin{aligned} & 67=50+17 \\ & 50 \div 5=10 \end{aligned}$ $17 \div 5=3$ remainder 2 $67 \div 5=13 \text { remainder } 2$ There are 13 children in each line and 2 children left out．

Year 4

	Concrete	Pictorial				Abstract
Year 4 Addition						
Understandin g numbers to 10,000	Use place value equipment to understand the place value of 4-digit numbers. 4 thousands equal 4,000. 1 thousand is 10 hundreds.	Represent numbers using place value counters once children understand the relationship between 1,000 s and 100s.$2,000+500+40+2=2,542$				Understand partitioning of 4-digit numbers, including numbers with digits of 0 . $5,000+60+8=5,068$ Understand and read 4-digit numbers on a number line.
Choosing mental methods where appropriate	Use unitising and known facts to support mental calculations. Make 1,405 from place value equipment. Add 2,000. Now add the 1,000s. 1 thousand +2 thousands = 3 thousands $1,405+2,000=3,405$	Use un support \square I can a $200+$ So, 4,2	ing and mental \square the 10 $\begin{aligned} & 0=500 \\ & +300 \end{aligned}$	nown facts ulations. mentally. 4,556	to	Use unitising and known facts to support mental calculations. $\begin{aligned} & 4,256+300=? \\ & 2+3=5 \quad 200+300=500 \\ & 4,256+300=4,556 \end{aligned}$

Column addition with exchange

Use place value equipment on a place value grid to organise thinking.

Ensure that children understand how the columns relate to place value and what to do if the numbers are not all 4digit numbers.

Use equipment.to show 1,905 + 775.

Why have only three columns been used for the second row? Why is the Thousands box empty?

Which columns will total 10 or more?

Use place value equipment to model required exchanges.

Th	H	T	0
(1)	©-0 0	(1) 0 (-) (-)	(1)
(0):)0	-	(1)(0)-	(1)01

Th	H	T	0
(10)	-()0 -	(1)(0) (-) (-)	
(1):5)	-	(-)(-)	(1)
Th	H	T	0
(a)	-()<<)	(-)(0)	
(5):5)	©-3)	(1)(-)((1)

Include examples that exchange in more than one column.

Use a column method to add, including exchanges.

Th	H	T	O
I	5	5	4
4	2	3	7
5	7	9	1

Include examples that exchange in more than one column.

	\rightarrow 腮昭昭		$\begin{array}{rrrr} \text { Th } & H & \text { T } & 0 \\ \hline 2 & 48 & 9 & 0 \\ \hline & 2 & 4 & 3 \\ \hline 2 & 2 & 5 & 9 \\ \hline \end{array}$
Representing subtractions and checking strategies		Use bar models to represent subtractions where a part needs to be calculated． I can work out the total number of Yes votes using 5，762－2，899． Bar models can also represent＇find the difference＇as a subtraction problem．	Use inverse operations to check subtractions． I calculated 1，225－799＝574． I will check by adding the parts． The parts do not add to make 1，225． I must have made a mistake．

Year 4 Multiplication			
Multiplying by multiples of 10 and 100	Use unitising and place value equipment to understand how to multiply by multiples of 1,10 and 100 . 3 groups of 4 ones is 12 ones. 3 groups of 4 tens is 12 tens. 3 groups of 4 hundreds is 12 hundreds.	Use unitising and place value equipment to understand how to multiply by multiples of 1,10 and 100. $3 \times 4=12$ $3 \times 40=120$ $3 \times 400=1,200$	Use known facts and understanding of place value and commutativity to multiply mentally. $\begin{aligned} & 4 \times 7=28 \\ & 4 \times 70=280 \\ & 40 \times 7=280 \end{aligned}$ $\begin{aligned} & 4 \times 700=2,800 \\ & 400 \times 7=2,800 \end{aligned}$
Understandin g timestables up to 12×12	Understand the special cases of multiplying by 1 and 0 . $5 \times 1=5$ $5 \times 0=0$	Represent the relationship between the $\times 9$ table and the $\times 10$ table. Represent the $\times 11$ table and $\times 12$ tables in relation to the $\times 10$ table. $\begin{aligned} & 2 \times 11=20+2 \\ & 3 \times 11=30+3 \\ & 4 \times 11=40+4 \end{aligned}$ $4 \times 12=40+8$	Understand how times-tables relate to counting patterns. Understand links between the $\times 3$ table, $\times 6$ table and $\times 9$ table 5×6 is double 5×3 $\times 5$ table and $\times 6$ table I know that $7 \times 5=35$ so I know that $7 \times 6=35+7$. $\times 5$ table and $\times 7$ table $3 \times 7=3 \times 5+3 \times 2$ $\times 9$ table and $\times 10$ table $6 \times 10=60$ $6 \times 9=60-6$

Understandin g and using partitioning in multiplication	Make multiplications by partitioning. 4×12 is 4 groups of 10 and 4 groups of 2. $4 \times 12=40+8$	Understand how multiplication and partitioning are related through addition. $\begin{aligned} & 4 \times 3=12 \\ & 4 \times 5=20 \\ & 12+20=32 \\ & 4 \times 8=32 \end{aligned}$	Use partitioning to multiply 2-digit numbers by a single digit. $18 \times 6=?$ $\begin{aligned} 18 \times 6 & =10 \times 6+8 \times 6 \\ & =60+48 \\ & =108 \end{aligned}$
Column multiplication for 2- and 3-digit numbers multiplied by a single digit	Use place value equipment to make multiplications. Make 4×136 using equipment. I can work out how many 1 s, 10 s and 100s. There are 4×6 ones... 24 ones There are 4×3 tens ... 12 tens There are 4×1 hundreds ... 4 hundreds $24+120+400=544$	Use place value equipment alongside a column method for multiplication of up to 3-digit numbers by a single digit.	Use the formal column method for up to 3-digit numbers multiplied by a single digit. $\begin{array}{r} 312 \\ \times \quad 3 \\ \hline 936 \\ \hline \end{array}$ Understand how the expanded column method is related to the formal column method and understand how any exchanges are related to place value at each stage of the calculation.

Multiplying more than two numbers	Represent situations by multiplying three numbers together. Each sheet has 2×5 stickers. There are 3 sheets. There are $5 \times 2 \times 3$ stickers in total. $\begin{aligned} & \underbrace{5 \times 2}_{1} \times 3=30 \\ & 10 \times 3=30 \end{aligned}$	Understand that commutativity can be used to multiply in different orders. $\begin{array}{r} 2 \times 6 \times 10=120 \\ 12 \times 10=120 \end{array}$ $\begin{array}{r} 10 \times 6 \times 2=120 \\ 60 \times 2=120 \end{array}$	Use knowledge of factors to simplify some multiplications. $\begin{aligned} & 24 \times 5=12 \times 2 \times 5 \\ & 12 \times \underbrace{2 \times 5}_{12 \times 10}= \\ & =120 \end{aligned}$ So, $24 \times 5=120$
Year 4 Division			
Understandin g the relationship between multiplication and division, including times-tables	Use objects to explore families of multiplication and division facts. $4 \times 6=24$ 24 is 6 groups of 4 . 24 is 4 groups of 6 . 24 divided by 6 is 4 . 24 divided by 4 is 6 .	Represent divisions using an array. $28 \div 7=4$	Understand families of related multiplication and division facts. I know that $5 \times 7=35$ so I know all these facts: $\begin{aligned} & 5 \times 7=35 \\ & 7 \times 5=35 \\ & 35=5 \times 7 \\ & 35=7 \times 5 \\ & 35 \div 5=7 \\ & 35 \div 7=5 \\ & 7=35 \div 5 \\ & 5=35 \div 7 \end{aligned}$

Dividing multiples of 10 and 100 by a single digit	Use place value equipment to understand how to use unitising to divide. 8 ones divided into 2 equal groups 4 ones in each group 8 tens divided into 2 equal groups 4 tens in each group 8 hundreds divided into 2 equal groups 4 hundreds in each group	Represent divisions using place value equipment. $9 \div 3=3$ 9 tens divided by 3 is 3 tens. 9 hundreds divided by 3 is 3 hundreds.	Use known facts to divide 10 s and 100s by a single digit. $\begin{aligned} & 15 \div 3=5 \\ & 150 \div 3=50 \\ & 1500 \div 3=500 \end{aligned}$
Dividing 2digit and 3digit numbers by a single digit by partitioning into 100s, 10s and 1 s	Partition into 10 s and 1 s to divide where appropriate. $39 \div 3=?$ $39=30+9$ $\begin{gathered} 30 \div 3=10 \\ 9 \div 3=3 \\ 39 \div 3=13 \end{gathered}$	Partition into $100 \mathrm{~s}, 10 \mathrm{~s}$ and 1 s using Base 10 equipment to divide where appropriate. $39 \div 3=?$ $3 \text { groups of I ten }$ 3 groups of 3 ones $\begin{gathered} 39=30+9 \\ 30 \div 3=10 \\ 9 \div 3=3 \\ 39 \div 3=13 \end{gathered}$	Partition into 100s, 10s and 1s using a part-whole model to divide where appropriate. $142 \div 2=?$ $\begin{gathered} 100 \div 2=50 \\ 40 \div 2=20 \\ 6 \div 2=3 \\ 50+20+3=73 \\ 142 \div 2=73 \end{gathered}$

Dividing 2digit and 3digit numbers by a single digit, using flexible partitioning	Use place value equipment to explore why different partitions are needed. $42 \div 3=?$ I will split it into 30 and 12, so that I can divide by 3 more easily.	Represent how to partition flexibly where needed. $84 \div 7=?$ I will partition into 70 and 14 because I am dividing by 7 . $84 \div 7=12$	Make decisions about appropriate partitioning based on the division required. Understand that different partitions can be used to complete the same division.
Understandin g remainders	Use place value equipment to find remainders. 85 shared into 4 equal groups There are 24, and 1 that cannot be shared.	Represent the remainder as the part that cannot be shared equally. $72 \div 5=14$ remainder 2	Understand how partitioning can reveal remainders of divisions. $\begin{aligned} & 80 \div 4=20 \\ & 12 \div 4=3 \end{aligned}$ $95 \div 4=23$ remainder 3

UPPER KEY STAGE 2

UPPER KEY STAGE 2

In upper Key Stage 2, children build on secure foundations in calculation, and develop fluency, accuracy and flexibility in their approach to the four operations. They work with whole numbers and adapt their skills to work with decimals, and they continue to develop their ability to select appropriate, accurate and efficient operations.

Key language: decimal, column methods, exchange, partition, mental method, ten thousand, hundred thousand, million, factor, multiple, prime number, square number, cube number

Progression in calculation in Upper Key Stage 2

Addition and subtraction: Children build on their

 column methods to add and subtract numbers with up to seven digits, and they adapt the methods to calculate efficiently and effectively with decimals, ensuring understanding of place value at every stage.Children compare and contrast methods, and they select mental methods or jottings where appropriate and where these are more likely to be efficient or accurate when compared with formal column methods.

Bar models are used to represent the calculations required to solve problems and may indicate where efficient methods can be chosen.

Multiplication and division: Building on their

 understanding, children develop methods to multiply up to 4 -digit numbers by single-digit and 2-digit numbers.Children develop column methods with an understanding of place value, and they continue to use the key skill of unitising to multiply and divide by 10,100 and 1,000 .

Written division methods are introduced and adapted for division by single-digit and 2-digit numbers and are understood alongside the area model and place value. In Year 6, children develop a secure understanding of how division is related to fractions.

Multiplication and division of decimals are also introduced and refined in Year 6.

Fractions: Children find fractions of amounts, multiply a fraction by a whole number and by another fraction, divide a fraction by a whole number, and add and subtract fractions with different denominators. Children become more confident working with improper fractions and mixed numbers and can calculate with them.

Understanding of decimals with up to 3 decimal places is built through place value and as fractions, and children calculate with decimals in the context of measure as well as in pure arithmetic.

Children develop an understanding of percentages in relation to hundredths, and they understand how to work with common percentages: $50 \%, 25 \%, 10 \%$ and 1%.

Year 5

	Concrete	Pictorial	Abstract
Year 5 Addition			
Column addition with whole numbers	Use place value equipment to represent additions. Add a row of counters onto the place value grid to show $15,735+4,012$.	Represent additions, using place value equipment on a place value grid alongside written methods. I need to exchange 10 tens for a 100.	Use column addition, including exchanges.
Representing additions		Bar models represent addition of two or more numbers in the context of problem solving.	Use approximation to check whether answers are reasonable. \qquad I will use $23,000+8,000$ to check.

Adding tenths	Link measure with addition of decimals. Two lengths of fencing are 0.6 m and 0.2 m. How long are they when added together? 0.6 m 0.2 m \square	Use a bar model with a number line to add tenths. $0.6+0.2=0.8$ 6 tenths +2 tenths $=8$ tenths	Understand the link with adding fractions. $\frac{6}{10}+\frac{2}{10}=\frac{8}{10}$ 6 tenths +2 tenths $=8$ tenths $0.6+0.2=0.8$
Adding decimals using column addition	Use place value equipment to represent additions. Show $0.23+0.45$ using place value counters.	Use place value equipment on a place value grid to represent additions. Represent exchange where necessary. $$ Include examples where the numbers of decimal places are different. $\begin{array}{r} \mathrm{O} \cdot \text { Tth Hth } \\ \hline 5 \cdot 0 \\ +1 \cdot 2 \\ +1 \cdot 2 \\ \hline 6 \cdot 2 \\ \hline \end{array}$	Add using a column method, ensuring that children understand the link with place value. $\begin{array}{r} 0 \cdot \text { Tth Hth } \\ \hline 0 \cdot 2 \text { } \\ +0 \cdot 4 \\ \hline 0 \cdot 6 \\ \hline 0 \\ \hline \end{array}$ Include exchange where required, alongside an understanding of place value. $$ Include additions where the numbers of decimal places are different. $3.4+0.65=?$ $\begin{array}{r} 0 \cdot \text { Tth } \text { Hth } \\ \hline 3 \cdot 4 \quad 0 \\ +0 \cdot 6 \quad 5 \\ \hline \end{array}$

Year 5 Subtraction			
Column subtraction with whole numbers	Use place value equipment to understand where exchanges are required. $2,250-1,070$	Represent the stages of the calculation using place value equipment on a grid alongside the calculation, including exchanges where required.$15,735-2,582=13,153$TTh Th H T 0 - 0000000000000 $000 \varnothing \varnothing$ TTh Th H T O 1 5 7 3 5 - 2 5 8 2	Use column subtraction methods with exchange where required. $62,097-18,534=43,563$
Checking strategies and representing subtractions		Bar models represent subtractions in problem contexts, including 'find the difference'.	Children can explain the mistake made when the columns have not been ordered correctly. Use approximation to check calculations. I calculated $18,000+4,000$ mentally to check my subtraction.

Year 5 Multiplication				
Understandin g factors	Use cubes or counters to explore the meaning of 'square numbers'. 25 is a square number because it is made from 5 rows of 5 . Use cubes to explore cube numbers. 8 is a cube number.	Use images to explore examples and non-examples of square numbers. $\begin{aligned} & 8 \times 8=64 \\ & 8^{2}=64 \end{aligned}$ 12 is not a square number, because you cannot multiply a whole number by itself to make 12.	Understand the pattern of square numbers in the multiplication tables. Use a multiplication grid to circle each square number. Can children spot a pattern?	
Multiplying by 10, 100 and 1,000	Use place value equipment to multiply by 10,100 and 1,000 by unitising.	Understand the effect of repeated multiplication by 10 . \|	IIIIIIII	Understand how exchange relates to the digits when multiplying by 10,100 and 1,000. $\begin{aligned} & 17 \times 10=170 \\ & 17 \times 100=17 \times 10 \times 10=1,700 \\ & 17 \times 1,000=17 \times 10 \times 10 \times 10=17,000 \end{aligned}$

Multiplying 2digit numbers by 2-digit numbers	Partition one number into 10 s and 1s, then add the parts. $23 \times 15=?$ परापा $3 \times 15=45$ There are 345 bottles of milk in total. $23 \times 15=345$	Use 28 10 m 5 m 28	area mode $5=$? \qquad 20 m $20 \times 10=200 \mathrm{~m}^{2}$ $20 \times 5=100 \mathrm{~m}^{2}$ $5=420$	and add the parts.	Use column multiplication, ensuring understanding of place value at each stage.
Multiplying up to 4-digits by 2-digits		Use 10 2 143 The 143	e area mod 0 1.716 1,716 boxes of cerea $12=1,716$	en add the parts.\squareTh H T O I 0 0 0 4 0 0 2 0 0 8 0 3 0 + 6 1 7 1 6 1	Use column multiplication, ensuring understanding of place value at each stage. Progress to include examples that require multiple exchanges as understanding, confidence and fluency build.

			$1,274 \times 32=?$ First multiply 1,274 by 2. $\begin{array}{r} 1274 \\ \times \quad 32 \\ \times \quad 3 \quad 1,274 \times 2 \end{array}$ \qquad Then multiply 1,274 by 30 . Finally, find the total.
Multiplying decimals by 10, 100 and 1,000	Use place value equipment to explore and understand the exchange of 10 tenths, 10 hundredths or 10 thousandths.	Represent multiplication by 10 as exchange on a place value grid.	Understand how this exchange is represented on a place value chart.
		$0.14 \times 10=1.4$	

Year 5 Division			
Understandin g factors and prime numbers	Use equipment to explore the factors of a given number. -0.8.0.0.8 $\begin{aligned} & 24 \div 3=8 \\ & 24 \div 8=3 \end{aligned}$ 8 and 3 are factors of 24 because they divide 24 exactly. 5 is not a factor of 24 because there is a remainder.	Understand that prime numbers are numbers with exactly two factors. $\begin{aligned} & 13 \div 1=13 \\ & 13 \div 2=6 r 1 \\ & 13 \div 4=4 r 1 \end{aligned}$ 1 and 13 are the only factors of 13. 13 is a prime number.	Understand how to recognise prime and composite numbers. I know that 31 is a prime number because it can be divided by only 1 and itself without leaving a remainder. I know that 33 is not a prime number as it can be divided by 1, 3, 11 and 33 . I know that 1 is not a prime number, as it has only 1 factor.
Understandin g inverse operations and the link with multiplication , grouping and sharing	Use equipment to group and share and to explore the calculations that are present. I have 28 counters. I made 7 groups of 4. There are 28 in total. I have 28 in total. I shared them equally into 7 groups. There are 4 in each group. I have 28 in total. I made groups of 4. There are 7 equal groups.	Represent multiplicative relationships and explore the families of division facts. $\begin{aligned} & 60 \div 4=15 \\ & 60 \div 15=4 \end{aligned}$	Represent the different multiplicative relationships to solve problems requiring inverse operations. $12 \div 3=\square$ $12 \div \square=3$ \square $\times 3=12$ $\div 3=12$ Understand missing number problems for division calculations and know how to solve them using inverse operations. $\begin{aligned} & 22 \div ?=2 \\ & 22 \div 2=? \\ & ? \div 2=22 \\ & ? \div 22=2 \end{aligned}$

Dividing whole numbers by 10, 100 and 1,000	Use place value equipment to support unitising for division. $4,000 \div 1,000$ 4,000 is 4 thousands. $4 \times 1,000=4,000$ So, $4,000 \div 1,000=4$	Use a bar model to support dividing by unitising. $380 \div 10=38$ 380 is 38 tens. $\begin{aligned} & 38 \times 10=380 \\ & 10 \times 38=380 \end{aligned}$ So, $380 \div 10=38$	Understand how and why the digits change on a place value grid when dividing by 10,100 or 1,000 . $3,200 \div 100=$? 3,200 is 3 thousands and 2 hundreds. $\begin{aligned} & 200 \div 100=2 \\ & 3,000 \div 100=30 \\ & 3,200 \div 100=32 \end{aligned}$ So, the digits will move two places to the right.
Dividing by multiples of 10, 100 and 1,000	Use place value equipment to represent known facts and unitising. 15 ones put into groups of 3 ones. There are 5 groups. $15 \div 3=5$ 15 tens put into groups of 3 tens. There are 5 groups. $150 \div 30=5$	Represent related facts with place value equipment when dividing by unitising. 180 is 18 tens. 18 tens divided into groups of 3 tens. There are 6 groups. $180 \div 30=6$	Reason from known facts, based on understanding of unitising. Use knowledge of the inverse relationship to check. $\begin{aligned} & 3,000 \div 5=600 \\ & 3,000 \div 50=60 \\ & 3,000 \div 500=6 \end{aligned}$ $\begin{aligned} & 5 \times 600=3,000 \\ & 50 \times 60=3,000 \\ & 500 \times 6=3,000 \end{aligned}$

		12 ones divided into groups of 4. There are 3 groups. 12 hundreds divided into groups of 4 hundreds. There are 3 groups. $1200 \div 400=3$	
Dividing up to four digits by a single digit using short division	Explore grouping using place value equipment. $268 \div 2=?$ There is 1 group of 2 hundreds. There are 3 groups of 2 tens. There are 4 groups of 2 ones. $264 \div 2=134$	Use place value equipment on a place value grid alongside short division. The model uses grouping. A sharing model can also be used, although the model would need adapting. Lay out the problem as a short division. There is 1 group of 4 in 4 tens. There are 2 groups of 4 in 8 ones. Work with divisions that require exchange.	Use short division for up to 4-digit numbers divided by a single digit. $\begin{array}{r} 0 \quad 5 \quad 5 \quad 6 \\ 7 \begin{array}{rrrr} 3 & 3 & { }^{3} q & 4 \\ 7 \end{array} \\ 3,892 \div 7=556 \end{array}$ Use multiplication to check. $\begin{aligned} & 556 \times 7=? \\ & 6 \times 7=42 \\ & 50 \times 7=350 \\ & 500 \times 7=3500 \\ & 3,500+350+42=3,892 \end{aligned}$

Year 6

Selecting mental methods for larger numbers where appropriate	Represent 7-digit numbers on a place value grid, and use this to support thinking and mental methods. $2,411,301+500,000=?$ This would be 5 more counters in the HTh place. So, the total is $2,911,301$. $2,411,301+500,000=2,911,301$	Use a bar model to support thinking in addition problems. $257,000+99,000=?$ I added 100 thousands then subtracted 1 thousand. 257 thousands +100 thousands $=357$ thousands $\begin{aligned} & 257,000+100,000=357,000 \\ & 357,000-1,000=356,000 \end{aligned}$ So, $257,000+99,000=356,000$	Use place value and unitising to support mental calculations with larger numbers. $\begin{aligned} & 195,000+6,000=? \\ & 195+5+1=201 \end{aligned}$ 195 thousands +6 thousands $=201$ thousands So, $195,000+6,000=201,000$
Understandin g order of operations in calculations	Use equipment to model different interpretations of a calculation with more than one operation. Explore different results.	Model calculations using a bar model to demonstrate the correct order of operations in multi-step calculations.	Understand the correct order of operations in calculations without brackets. Understand how brackets affect the order of operations in a calculation. $\begin{aligned} & 4+6 \times 16 \\ & 4+96=100 \\ & (4+6) \times 16 \\ & 10 \times 16=160 \end{aligned}$

Year 6 Subtraction			
Comparing and selecting efficient methods	Use counters on a place value grid to represent subtractions of larger numbers.	Compare subtraction methods alongside place value representations. Use a bar model to represent calculations, including 'find the difference' with two bars as comparison.	Compare and select methods. Use column subtraction when mental methods are not efficient. Use two different methods for one calculation as a checking strategy. Use column subtraction for decimal problems, including in the context of measure.
Subtracting mentally with larger numbers		Use a bar model to show how unitising can support mental calculations. $950,000-150,000$ That is 950 thousands - 150 thousands \square 150 800 So, the difference is 800 thousands. $950,000-150,000=800,000$	Subtract efficiently from powers of 10. $10,000-500=?$

Year 6 Multiplication			
Multiplying up to a 4-digit number by a single digit number	Use equipment to explore multiplications. 4 groups of 2,345 This is a multiplication: $\begin{aligned} & 4 \times 2,345 \\ & 2,345 \times 4 \end{aligned}$	Use place value equipment to compare methods.	Understand area model and short multiplication. Compare and select appropriate methods for specific multiplications.
Multiplying up to a 4-digit number by a 2-digit number		Use an area model alongside written multiplication. Method I	Use compact column multiplication with understanding of place value at all stages.

Using knowledge of factors and partitions to compare methods for multiplication s	Use equipment to understand square numbers and cube numbers. $\begin{aligned} & 5 \times 5=5^{2}=25 \\ & 5 \times 5 \times 5=5^{3}=25 \times 5=125 \end{aligned}$	Compare methods visually using an area model. Understand that multiple approaches will produce the same answer if completed accurately. Represent and compare methods using a bar model.	Use a known fact to generate families of related facts. Use factors to calculate efficiently. $\begin{aligned} & 15 \times 16 \\ = & 3 \times 5 \times 2 \times 8 \\ = & 3 \times 8 \times 2 \times 5 \\ = & 24 \times 10 \\ = & 240 \end{aligned}$
Multiplying by 10, 100 and 1,000	Use place value equipment to explore exchange in decimal multiplication. Represent 0.3. Multiply by 10 . Exchange each group of ten tenths. $0.3 \times 10=?$ 0.3 is 3 tenths. 10×3 tenths are 30 tenths. 30 tenths are equivalent to 3 ones.	Understand how the exchange affects decimal numbers on a place value grid. $0.3 \times 10=3$	Use knowledge of multiplying by 10, 100 and 1,000 to multiply by multiples of 10 , 100 and 1,000 . $\begin{aligned} 8 \times 100 & =800 \\ 8 \times 300 & =800 \times 3 \\ & =2,400 \end{aligned}$ $\begin{aligned} 2.5 \times 10 & =25 \\ 2.5 \times 20 & =2 \cdot 5 \times 10 \times 2 \\ & =50 \end{aligned}$

Year 6 Division			
Understandin g factors	Use equipment to explore different factors of a number. $24 \div 4=6$ $30 \div 4=7$ remainder 2 4 is a factor of 24 but is not a factor of 30.	Recognise prime numbers as numbers having exactly two factors. Understand the link with division and remainders.	Recognise and know primes up to 100. Understand that 2 is the only even prime, and that 1 is not a prime number.
Dividing by a single digit	Use equipment to make groups from a total. -0.0.0.0.0••••• -0.0.0.0.0. --00000000000 There are 78 in total. There are 6 groups of 13 . There are 13 groups of 6 .		Use short division to divide by a single digit. $\begin{aligned} & 0 \\ & 6 \longdiv { 1 ^ { \prime } 3 2 } \end{aligned}$ $\begin{gathered} 02 \\ 6 \longdiv { 1 ' 3 ' 2 } \end{gathered}$ $\begin{array}{rrrr} 0 & 2 & 2 \\ 6 & 1 & 1 & 3 \end{array}$ Use an area model to link multiplication and division. \square 6 $6 \times ?=132$ $132=120+12$

			3 21 7 9 $-\quad 6$ - 6 0 1 6 8$\begin{array}{r} 3 \\ 218 \\ \hline 798 \\ -\quad 630 \\ \hline 1668 \\ -\quad 68 \\ \hline \end{array}$ Divisions with a remainder explored in problem-solving contexts.
Dividing by 10, 100 and 1,000	Use place value equipment to explore division as exchange. 0.2 is 2 tenths. 2 tenths is equivalent to 20 hundredths. 20 hundredths divided by 10 is 2 hundredths.	Represent division to show the relationship with multiplication. Understand the effect of dividing by 10 , 100 and 1,000 on the digits on a place value grid. Understand how to divide using division by 10,100 and 1,000. $12 \div 20=?$ \square \square \square	Use knowledge of factors to divide by multiples of 10, 100 and 1,000 . $40 \div 50=$ \square $\begin{aligned} & 40 \rightarrow \div 10 \rightarrow \div \div ?+5 \\ & 40 \rightarrow+5 \rightarrow+10 \rightarrow ? \\ & 40 \div 5=8 \\ & 8 \div 10=0.8 \end{aligned}$ So, $40 \div 50=0 \cdot 8$

Dividing

 decimalsUse place value equipment to explore division of decimals.

8 tenths divided into 4 groups. 2 tenths in each group.

Use a bar model to represent divisions.

$4 \times 2=8 \quad 8 \div 4=2$
So, $4 \times 0.2=0.8 \quad 0.8 \div 4=0.2$

Use short division to divide decimals with up to 2 decimal places.
$8 \longdiv { 4 \cdot 2 4 }$
$\begin{array}{ll}8 & 0 \cdot \\ & 4 \cdot{ }^{4} 24\end{array}$
$0 \cdot 5$
$8 \longdiv { 4 \cdot { } ^ { 4 } 2 { } ^ { 2 } 4 }$
$\begin{array}{rrr} & 0 \cdot 5 \quad 3 \\ & 4 \cdot{ }^{4} 2{ }^{2} 4\end{array}$

[^0]: 10 are bouncing.
 2 get off.
 8 are left.
 $10-2=8$

